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FOREWORD
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1. INTRODUCTION

There has in recent years been a renewed interest in satellite operational

control using rapid and accurate prediction techniques. Of especial interest are

satellites in low earth orbits that experience atmospheric drag disturbances.

Early studies concerning the effects of atmospheric drag perturbations upon

artificial satellites of small eccentricity were performed by Cook and Kin- 'ele,1.2

3 4 5
Zee, Otterman and Lichtenfeld, and Lane. More recent analyses have been

developed by Liu and Alford,6 and Santora.7,8 The latter author's works represent

one of the more realistic approaches to the determination of drag perturbations on
9

a decaying satellite. There the oblateness and diurnal characteristics of the

atmosphere have been combined with the effects induced by the oblate earth mass

gravitational perturbations to provide a "unified" analytic theory describing both

the drag and gravitational influences exerted upon a low altitude earth satellite.

Santora's theory is unified in the sense that the oblate diurnal atmospheric

drag perturbations have been combined with those produced by the terrestrial

gravity field. It is not a completely unified theory for low altitude satellite

motion because a significantly different development must be used to treat orbits

with 0. S e s .01 than is used for orbits with .01 < e s .20. A completely

unified theory is presented here that not only combines the oblate gravitational

effects with those produced by an oblate diurnal atmosphere, but also eliminates

the eccentricity dichotomy that exists in Santora's approach.

The following sections of this report discuss in detail the development of this

unified theory. The nonsingular element set and the associated Lagrange planetary

equations used in the development of the theory; a detailed derivation of the drag

decay rates; and an overview of the geopotential perturbations are presented in the

following sections. Appendixes are also provided that contain mathematical

relationships used in the development of the decay rate expressions.

1
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2. EQUATIONS OF MOTION IN NONSINGULAR VARIABLES

The eccentricity dichotomy that exists in the Santora theory can be removed by

redeveloping the theory in terms of the following element set:

a semimajor axis

e cos Uj(C = wi + Q) (2.1)

9~ ~ = sin U

P =sin (1/2) cos Q2

Q sin (i./2) sin Q

where a, e, 1, w, Q, and M are the usual Keplerian elements. This element set is

nonsingular for I~ j i and e < 1.

The Lagrange planetary equations for the nonsingular element set defined in

Equations 2.1 are:

2R
naA

n--R + I -(CR + nR)+ 2 (PRP +QR)
na a 2na 22na 2yQ

2 g- R X--2--R - 1 2nP + Qna (1+ y) na2  2n n(R Q
(2.2)

2 --- nR X+ Y 2 R + 1 2 (PR P+ QR)Q
na (1+ y) na 2na y

12PR A- R Q+ 12P(nR CR)
2na y 4na Y 2

Q 2 QRA X RP + 12 Q(nRC &R T)
2na Y 4na Y 2na Y

where n is the mean motion and

- 1 e~ (2.3)

2
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For close-earth artificial satellites perturbed by the earth's oblateness and

atmospheric resistance, the partials of the disturbing function are of the form

R =R D + RG  (2.4)

i4 where a represents any of the elements of Equations 2.1, and the superscripts D

and G designate the perturbing terms due to atmospheric drag and the earth's

oblateness, respectively. To be more explicit

RD .r
R F- (2.5)

and

R 9R (2.6)
a D

where f is the nonconservative drag force, r is the satellite radius vector, and

R is the gravitational disturbing function.

3. DRAG DECAY RATES FOR NONSINGULAR ELEMENTS IN
AN OBLATE DIURNAL ATMOSPHERE

Analytic expressions for drag decay rates in an oblate diurnal atmosphere

using nonsingular variables are developed in this section. Since the principal

drag effects on a close-earth satellite are perturbations in a and e, it is

necessary only to consider expressions for the drag induced changes in a, ,

and n.

An analytic form for the atmospheric density can be obtained by combining
the oblate atmosphere used by Cook, King-Hele, and Walker 10 with that of an

atmosphere with diurnal variation discussed by Cook and King-Hele. The resulting

form for the density is given by

P P 0 (I + F cos 4)exp[- (r - c)] (3.1)

where p0 is an average atmospheric density defined by

3
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PO f (max + P ) (3.2)

F is a density amplitude factor given by

pma - pm
F max m (3.3)

Pmax + Pmin

a = H- I  (3.4)

r I - sin 2 1 sin2 u (3.5)

P1 1 - c sin 2 sin 2 w

and

o A cos E - e ( - e 2) sin E
cos = A + Bos E (3.6)

In the last four equations pmax and pmin are the maximum daytime and minimum

nighttime densities, respectively, at the osculating perigee altitude h ; H isP

the density scale height; e is the earth's ellipticity; r is the osculating

perigeal radius; E is the eccentric anomaly; u 0 + w, where 0 is the true

anomaly; and

A= sin 6B sin i sin w + cos 6B{ cos ( - ) cos W

- cos t sin (Q - a B) sin W (3.7)

and

B = sin 6B sin i cos w - cos 6Bj cos ( -B ) sin w

.,+ cos t sin ( -c cB ) Cos w(3.8)

The declination and right ascension of the center of Ihe diurnal bulge are

designated by 6B and a B9 respectively, in the last two equations.

Equation 3.5 may be expanded to first order in , to give

4
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A1 2

a f rp[I + I sin 2 (cos 2u - cos 2)] (3.9)

Similarly, Equation 3.6 may be expanded to first order in e to give

2
cos p = A(cos E - e + e cos E) + B(sin E + e sin E cos E) (3.10)

Substituting Equations 3.9 and 3.1J into Equation 3.1 and using the relation

r = a(1 - e cos E) (3.11)

allows the following first-order expression to be written for the atmospheric

density:

p = o[l + FA(cos E - e + e cos E) + FB(sin E

+ e sin E cos E)-exp -ae(l cos E)

+ c cos 2u - c cos 2w4 (3.12)

where

= - _r sin2  (3.13)

This quantity may be treated as a small parameter of the same order of magnitude

as the eccentricity so that the following expansion may be used:

1 2 2
exp c cos 2u 1 + c cos 2u +- c cos 2u (3.14)

The changes in the elements a, C, and n over one orbital revolution due

to atmospheric drag deceleration are given by (see Appendix B)

( + e cos E)(Aa ffi - 6a f P i - e co E) 2  dE (3 .15 ) .

(1-e cos E

5
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"-\.7 1/2
CSa, I + e cos ECo
. f ( -Ia -e cos E)

0

- sin I sin E) dE (3.16)

and

(CDS) r 1 + e cos ( / co

An \ aOf (1 - e cosF

+ cos w sin E) dE (3.17)

., where T is the inverse ballistic coefficient for the satellite, and

r
(1 - Aw cos )2  (3.18)

p

In the last expression v is the speed of the satellite at perigee and A isv,.' p

"'*' the ratio of atmospheric angular rotation rate to that of the earth, designated by

e

Using the relations

Cos 0 cos E - e (3.19)

1o - e cos Et~

and

-e 1/2sn0= (I - e 2  sin E

si ) i0 (3.20)
1 - e cosE

. to eliminate 0 to first order in e; applying Equations 3.12 and 3.14; and

expanding the resulting integrands of Equations 3.15 - 3.17 yields:~9 I'

Aa = - oa2exp[-ae- c cos 2w I i\ Cos E

+ eFA cos2 E - eFA + FB sin E + t2FB sin E cos E L

+ c cos 2(w + E) -2ce sin 2(,, + E) + C 2

6
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'44I'O1 S 4(,. + E) - 2 sin 4(w + E) sin Eu 1

+ 2e cos E exp [$ae cos El dE (3.21)

S= - (o) P ayexp[-3ae - c cos 2w SAME • SAME}•(i

+ e cos E • -y cos 0 cos E - sin 1 sin-E exp[ae cos E] dE (3.22)

and

6an = - % 0 ayexp[-Bae - c cos 2w lfSAME •SAME.1

+ e cos E •Hy sin j cos E + cos sin E exp[ae cos E] dE (3.23)

When the integrands of the last three equations are multiplied, the results

contain trigonometric terms that are expressible as functions of cos (nE), n = 0,

1, 2, ..., 7. This permits them to be written in terms of the integral represen-

tation of the Bessel function of the first kind and imaginary argument defined by
~2 n

I ae) fcos (nE)exp(ae cos E) dE (3.24)
n(e jcO

The changes in a, C, and n over one orbital revolution due to atmospheric drag

deceleration then become

Aa =-2r DS6Poa2exp[- ae- c cos 2w] I + 2el I + FA[I1

+ e(1 + 312)] + c 12 + 2e1 3 + 2 FA[I + 13
2 0 22 3 2 3

OW 1 F I1+ ] e(l0 + 212 + 514)] cos 2w - cFB I - 13

+ I c2

+ FA[I 1 +- e(l 0 + 31)] + 4 c2  - e(I 3  315)

"4 7

M,' , : ..
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I Ico 4+ - FA[I 3  + 15 2 e(L) - 2 - r s 4w
' i3 - : " ( 2 - 4 :!

-: . 8c 2FB(I 3 -I5 - e(1, 8 4-r19(.5

= -27 6p0 aexp-ae - c cos 2J (I + - kc)i1

+ (e + FA)(I 0 + 12) + FAef 3 ]C1 + 1 co,

- FB[I - I + e(I I ml

2 0

+ L [I, + 1I + FAe (I3 + I5 - -5 e(I0  21,- 314
+~ 1 -L IF)1( + 21+ Cs + Fcir.1+

2e(I1 2 + I)] sin cos 2w I c NFB[I

... 24 + 2e(I - I5)] cos o + [e(Il0  - 2 + 31I4

+ 2(1 1  ) - FA(I - + 2e(Is - ))] sin sin 2

3 - 1- 0 - 4 +

+ ST [2(13 + 15) + e(516 + 214 - 312) + FA(16 + 21

+ 12 + e(31 7 + 315 - 13 - I1I)) os + FB 1 6 - 214
6 4•

+ 12 + e(31 7 - 715 + 51 3 - f1)] sin cos 4,.

+ c6FB[I6 - 12 + e(317 - 15 - 313 + I  cos 'I

+ [2(1 - 1 - e(51 - 81 + 31 - F( - 1

3 ) 5 (5 6  84 32) 6 21

+e(31 31 -1 + I) M *il sin 4 (.6

7 5 3 1

and

8N.,:

7 .. , 5 .% > .- ,'.& : ,, . .'<.i).,' ... -:,. , ':#. ':,.-v .'..'..'." ":.v . ,:. ,, - " : " '.,, .
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An -2 f-t-60aexp[- ae - c cos 2w] FB(1 + I -) I
\m/04 0w4j ~ 4 2

e( I 1 3)] cos C + [(I + . eFA)II + 1(e + FA)(I 0

1 2
+ I2) + - eFAI3 ](I + 4 sin - FB1 - 212 + 1

"2e(I -21 + I5)] cos C -- [I1 + I + eFA(I + I
1 3 5~) 2I 1 3 eF( 3  5)

+e(-L +12 +2141 + FA( I I0 + + . 14)] sin ro cos 2w
2 e( 0  2 12 4 2 04 2 12 4

+ - [e(1 0 - 412 + 314) - 2(11 - 13) - FA(I0 - 14 + 2e(l3

- 15))] cos - FB[I 0 - 14 - 2e(lI - 15)] sin 6 sin 2w

2
_ _FB[I 21 + I + e(31 71 + 51 1 Cos 61

-2 T6+64 2+ 7 - 5+53 1)Io~

- [2(13 + 15) + e(51 6 + 214 - 312) + FA(I6 + 214 + 12

2
+ e(317 + 315 -13 -I))] sin 6 cos 4w - - . [2(13 - 15)

- e(51 6 - 814 + 312) -FA(I 6 - 12 + e(317 - 315 -3

+ Ii))] cos - FB[I 6 - 12 + e(31 7 - 15 - 313

+ Ii)] sin 6 sin 4wi (3.27)

It should be noted that y does not appear in the last two equations since it

has been replaced with its first-order expansion equivalent of unity. The

chaniges in eccentricity and orbital period per revolution can be found from

Ae - (AC2 + An2 )  (3.28)

and

9
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3t"

= -- A a (3.29)

respectively, where T is the orbital period.

4. GEOPOTENTIAL PERTURBATIONS IN NONSINGULAR ELEMENTS

In order to evaluate the drag-induced changes in a, , and n given by

Equations 3.25 through 3.27 on a rev-by-rev basis, it is necessary to propagate

the gravitationally perturbed six-member nonsingular element set to the time of

interest. This subsection is devoted to a development of the gravitational

disturbing function R of Equation 2.6.

As will be discussed in subsequent studies, computations performed

using this development will be done in terms of the mean state. Thus, it is

convenient, yet completely general, to divide the gravitational disturbing

Sfunction into short-periodic and secular-long-periodic parts:

R =RSLP + R (4.1)

where the subscripts "SLP" and "SP" denote the secular-long-periodic and

short-periodic parts, respectively, and are given by

R SLP R tmpR (4.2)
1emp

t>2 m=O p=O q=2p-/

and

R tmpR (4.3)

t>2 m=O p=O q02p-t

The (Zmpq) th terms in the disturbing function summations are

10

sa,
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I ae
Rtmpq 2p (a / tm tp lllkepq(Aem

+ B tMsinG e )mq+ JImp (At sin emp

~Blem Cos 6 znpq)~ (4.4)

where a eis the mean equatorial radius of the earth, pt is the earth's

gravitational constant

A m , Cem, t m even(4 5
_-SteS t m odd

B (m= Seo t-m even(46
em Ctm, t-m odd(46

and

8 mp (te-2p +q)X -mO (4.7)

Here 8 is the Greenwich sidereal time.

The Jtm and Ktp functions in Equation 4.4 are the inclination and

eccentricity functions given by

v J2
k (e + M L (t2 2p 2-o,-2j

Jetmp(c) =2 t I~ in) -) 2

c2 i+c-cI/1(4.8)

Ir or



II . . . .. ... .i LU II U Em .I . .. . . . . . ___i___ J .

NSWC TR 84-353

CO q I+k kF

Kt ( ) ( I n' -t ) I qI : [ ( -) r I 2 p2 t)K/pq(y) = (-0) ""2 (1 + )- r!t! qj +k-

k=0 r=0 t=

(k-2p )(r2 + t ( + y) r t- (I _ Y)k J (for q > 0) (4.9)

and

't' Iql +k-

• 2 (1 + y)- (for q < 0) (4.10)

.-L, where

c = cos (i/2)

k = integral part of 
[ ]

j, = max(0, - a)

32 = min(2t - 2p, t - m)

a = m - t + 2p

he p and 1111 functions in Equation 4.4 are given by
The -"---mpq /mpq

k u2
Ru2 zIn+u (qX jaj) Iql -u up Ictl-2n+uQ2 n - u

J mpq= E E (-) ( uu2n-un (4.11)

n=0 u=u 1

and

12
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k 2

JIL.mpq =~ 2] 1: 6~ 2n+1Iu

Tu P il -2n-I+u Q2n-u+1 (4.12)

where

4 k = IRI + Icii] ' - q + iji -
22

= max(O, 2n - IcaI), u 2 - min(2n, IqI)

1 max(O, 2n + I - Icti), u' = min(2n + 1, Iql)

6u = 1, if q, ai are both positive or negative

6u = (-1)", if q or ai is negative

The partial derivatives of the inclination and eccentricity functions that

are required for use in the Lagrange planetary equations are

Z-mp =-2P -m
3P ac

aktmp -2Q "mp
3Q 2 ac

(4.13)

and ya

3K

where

13
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ac j~,

3C 2~p P(-p)' \i/=&--3

* c2 L 1sc ''( 2t-la,)s2 - (2j + a j aJ)s2]] (4.14)

4 s =sin (1/2)

OD qI+k k

ay l+y V'pq
k=0 r=0 t=0 '

[1)r- k- t)~ 2)(e-2 +)r+t (1 + Y)r, k. [(r + t -k

0 (- Y)k _ k(1 + y)(1* - Y) k-1] (q > 0) (4.15)

and

_ _tp jq 1+ y--q 0 jqj+k k

ay 1l+y Ktpq+ _)2 E E
k=0 r=0 t=

r1t /q~k kt k r 2(t! V 1+~)~k

[(r + t - k)(1 -y) k- k(1 + y)(1 - Y)ki (q < 0) (4.16)

The partial derivatives of the IR and 111 functions are as follows:

14
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(417

aIIL\p = ja a q 0,1imp

empq' In = mm

mp 11 lItmp q 3Q IRl p

aq 1q (qI>0)

andt

Thaosnglreemn e ofp Eqain 21 cnb ecmoe it h

% q+1, I(q<O)
andUa
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2 I2/2
e = ( 2 2)

-12 2 1/2

i = 2 sin
- I  2 + Q2) 

1 /2

a = tan- 1 (Q/P) (4.18)

w = tan (n/) -A

and

M = X - (W + Q)

In closing it should be mentioned that the osculating perigee radius r isP

required to compute the decay rates of Equations 3.25 - 3.27. This quantity

is given by

r = rSLP + r (4.19)
p SP SP

evaluated at 6 = 0. The rSLP portion is computed using the a and e obtained

from the Lagrange planetary equations when the gravitational disturbing function

R is represented by RSLP only. The short periodic variation of the satellite

radius is

2
1 a 3 2 e_ __r C - -- sin 2  + cos e

SP T20(~p\ 2
1I+ ;1-e'

+2 -C20 sin2 1 cos (2w + 20) (4.20)

where p is the orbital semi-latus rectum.

16
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-APPENDIX A

POSITION PARTIAL DERIVATIVES WITH RESPECT TO ORBITAL ELEMENTS

-R D

Relationships that are required for the transformation of R into a more

usable form are collected in this appendix. Let x., j = 1, 2, 3, represent theJ

inertial Cartesian coordinates of the satellite position vector r. Then

ax

3a a 
(A.1)

ax ax
=×1 r 1 - e(sin w cos Q + cos w sin Q cos )1 (A.2)

ax ax 2-2 a a [lx_- - e(sin w sin Q - cos w cos S cos t) (A.3)
aX y r au

x3 a 1 x3
y [r a < + e cos w sin t] (A.4)

ax
1 -r[sin u cos Q + cos u sin Q cos i] (A.5)

au

ax 2
au fr[sin u sin Q - cos u cos Q cos i] (A.6)

ax3  (A.7)
- -ff r cos u sin (A7

a7 au a X

ax a(x 1 X2) ax. (A.9)i

3Q ax au

ax 1 sin 0 ax1 a(cos w cos Q - sin w sin Q cos i) (A.1O)
3e 2 Du

18
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ax 2 _sin 6 ax 2
3e 2 - - a(cos w sin S2 + sin w cos Q2 cos i)(A.11)

ax _ ax
3- -i-3a sin wsint i A.12)

3 e 2 au

ax = r sin u sin Q sin i (A.13)

at
2 =_rsnucsQsni(.4

a r - sin ucos i n (A.15)

ax ax aax

- Cosw -sn Co(A.16)

ax. ax. ax. si
si )+cos w (A.17)

a~j ae aa e

ax.j= ax.j Co ax. sing (A.18)
at 31 os (1/2) 3Q si7n (/2)

and

ax. a x. sin Q ax. Cs(.9

aQ91co (1/2) 3Q sin (1/2)

In the above expressions u is the true argument of latitude defined by

u w + 6(A.20)
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APPENDIX B

A DERIVATION OF THE INTEGRAL EXPRESSIONS FOR Aa, AC, An

In order to obtain integral expressions for Aa, A , and Anl, it is necessary

to develop the Gauss planetary equations from the Lagrange planetary equations of

section 2 for the case when

4.
RD ar

R a F •L -(B.1)

4.
This is accomplished by first resolving the disturbing force F into three

components U, V, and W, where W is perpendicular to the plane of the orbit

(positive toward the north pole); V is in the plane of the orbit at right

angles to the radius vector (positive in the direction of motion); and U is

along the radius vector (positive in the positive r direction). The required

transformation is:

F cos u cos -sin u cos Q sin Q sin i U
X

- sin u sin n cos . - cos u sin n cos t

F y cos u sin - sin u sin n - cos Q sint V (B.2)

y + sin u cos Q cos i + cos u cos Q cost

F sin u sin i cos u sin t cos I W
z

Applying Equations B.2 along with the relationships of Appendix A to

Equation B.1 gives the following results for RD

R D = (r)U (B.3)
a a

2
R D (ae sin e)U + (ar)V (B.4)

20
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D siney sin Uoscseu+aCos e sin~

+ Cos O sin A] V (B.5)

R D _ a (sin e cos Ci+ sie Cs U +[a sin ,si 0

Cos ri Cos
y seB]V (B.6)

~D + ( sin u + Q Cos u Cos 12 )R= 2r[QV +2sin i \wJ (B.7)

and

R D -~2r [PV 2( sin u-P Cosu Cos 2(1/2))W] (B.8)-,..Q sin i

where

sin 0 os5 a- sina~ Co.
A -r 2 +(-) 1(B.9O)

2yr e

u -r ++I -L (B.10)

22
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the U, V, W representation to the T, N, W representation, where T is the component

along the velocity vector; N is normal to T (positive toward the interior of the

ellipse); and W is normal to the orbital plane as before. The required transfor-

mation is:

V ( + e cos) e sin T

(B.13)

U e sin 6 - (1 + e cos 6) N

where

a=I + e + 2e cos (B.14) K

Applying this transformation to the U, V, W representation for a, ,

and q and retaining only the T component yields:

a - a (B.15)
n'Y

--![2 cos (C + 0) + e(sin (C + 0) sin 0
nau

+ cos (, + 0) cos 0 + cos )] (B.16)

and

'na -X [2 sin (&j + 0) + e(sin (g + 0) cos 0

- cos (M + 0) sin 0 + sin Z )] (B.17)

The retarding force due to atmospheric drag resistance is

T - 6Spy (B.18)

22
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where 6 is given by Equation 3.18 and p is the atmospheric density. Substi- S

tuting Equation B.18 into Equations B.15 -B.17; using Equations 3.19 -3.20;

and applying the relations

2 +i +ecos E
V !L)) (B.19)

=a I- e Cos

and

d I n d (.0
* dt Il - e cos E )dE(.

allows the following to be written

da _ D)6 2P (1 + ecosE )32(.1

dE ap (1 - e co E) 1/2

I cs\ 1/2
_ kJLD + e cos

dE eco 6 -yp (y cos Co cos E -sin i sin E) (B.22)

and

do (CDS\ + e cos /2(si oco E+csCoin )

dE me cos E

The changes in these elements over one orbital revolution are obtained by

integrating the last three equations over 27r radians of eccentric anomaly to

give the final results

m 13/2
+ ( e c'os E)

I- (D S) af 27TCo E) 1/( cos i5 cos E

M e cos

-sin ) sin E) dE (B.25)

23
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and

c S , + e Cos E1(
a p - e cos E ( sin cos E

mcss E dEs
00

+ cos M sin E) dE (B.26)

24
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